Edexcel Maths S1

Topic Questions from Papers

Normal Distribution

Le	ave
bla	ank

5.	A scientist found that the time taken, M minutes, to carry out an experime modelled by a normal random variable with mean 155 minutes and standard 3.5 minutes.	
	Find	
	(a) $P(M > 160)$.	(3)
	(b) $P(150 \le M \le 157)$.	(4)
	(c) the value of m , to 1 decimal place, such that $P(M \le m) = 0.30$.	(4)

Leave	
hlank	

5.	From experience a high-jumper knows that he can clear a height of at least 1.78 m once in 5 attempts. He also knows that he can clear a height of at least 1.65 m on 7 out of 10 attempts. Assuming that the heights the high-jumper can reach follow a Normal distribution,		
	(a) draw a sketch to illustrate the above information,	(3)	
	(b) find, to 3 decimal places, the mean and the standard deviation of the heights high-jumper can reach,		
	ingii jumper cuii reacii,	(6)	
	(c) calculate the probability that he can jump at least 1.74 m.	(3)	

Question 5 continued	Leave blank

L	ea	ve
hl	ar	ık

7.	The measure of intelligence, IQ, of a group of students is assumed to be Normally distributed with mean 100 and standard deviation 15.			
	(a) Find the probability that a student selected at random has an IQ less than 91. (4)			
	The probability that a randomly selected student has an IQ of at least $100 + k$ is 0.2090 .			
	(b) Find, to the nearest integer, the value of k.			
	(6)			

(Total 10 marks)
(LUMI IU MMIN)

(a) Find $D(V > 25)$	
(a) Find $P(X > 25)$.	(3
	(2
(b) Find the value of <i>d</i> such that $P(20 < X < d) = 0.4641$	
(0)	(4
	(-

6.	The weights of bags of popcorn are normally distributed with mean of $200\mathrm{g}$ and 60% of all bags weighing between $190\mathrm{g}$ and $210\mathrm{g}$.			
	(a) Write down the median weight of the bags of popcorn. (1)			
	(b) Find the standard deviation of the weights of the bags of popcorn. (5)			
	A shopkeeper finds that customers will complain if their bag of popcorn weighs less than 180 g.			
	(c) Find the probability that a customer will complain. (3)			

Question 6 continued		Leave
		Q6
		20
	(Total 9 marks)	

I	Æ	28	ı	e
ŀ	١l	a	n	k

7.	A packing plant fills bags with cement. The weight X kg of a bag of cement can modelled by a normal distribution with mean 50 kg and standard deviation 2 kg.	n be
	(a) Find $P(X>53)$.	(3)
	(b) Find the weight that is exceeded by 99% of the bags.	(5)
	Three bags are selected at random.	
	(c) Find the probability that two weigh more than 53 kg and one weighs less than 53	8 kg. (4)
		_

Question 7 continued			Lea bla
			C
		(Total 12 marks)	

- **6.** The random variable X has a normal distribution with mean 30 and standard deviation 5.
 - (a) Find P(X < 39).

(2)

(b) Find the value of d such that P(X < d) = 0.1151

(4)

(c) Find the value of e such that P(X > e) = 0.1151

(2)

(d) Find P(d < X < e).

(2)

Question 6 continued		bla
		(
	(Total 10 marks)	
	TOTAL FOR PAPER: 75 MARKS	

(a) Find the probability of a bulb from company V baying a lifetime of less the	an 830
(a) Find the probability of a bulb, from company <i>X</i> , having a lifetime of less that hours.	(3)
(b) In a box of 500 bulbs, from company <i>X</i> , find the expected number having a li of less than 830 hours.	fetime (2)
A rival company <i>Y</i> sells bulbs with a mean lifetime of 860 hours and 20% of these have a lifetime of less than 818 hours.	e bulbs
(c) Find the standard deviation of the lifetimes of bulbs from company <i>Y</i> .	(4)
Both companies sell the bulbs for the same price.	
(d) State which company you would recommend. Give reasons for your answer.	(2)

uestion 8 continued		
	(Total 11 marks)	
	TOTAL FOR PAPER: 75 MARKS	

Leave
hlank

7.	The heights of a population of women are normally distributed with mean μ cm and standard deviation σ cm. It is known that 30% of the women are taller than 172 cm and 5% are shorter than 154 cm.
	(a) Sketch a diagram to show the distribution of heights represented by this information. (3)
	(b) Show that $\mu = 154 + 1.6449\sigma$. (3)
	(c) Obtain a second equation and hence find the value of μ and the value of σ . (4)
	A woman is chosen at random from the population.
	(d) Find the probability that she is taller than 160 cm. (3)

uestion 7 continued	
	(Total 13 marks)
	TOTAL FOR PAPER: 75 MARKS

Leave blank

- 7. The distances travelled to work, D km, by the employees at a large company are normally distributed with $D \sim N(30, 8^2)$.
 - (a) Find the probability that a randomly selected employee has a journey to work of more than 20 km.

(3)

(b) Find the upper quartile, Q_3 , of D.

(3)

(c) Write down the lower quartile, Q_1 , of D.

(1)

An outlier is defined as any value of D such that D < h or D > k where

$$h = Q_1 - 1.5 \times (Q_3 - Q_1)$$
 and $k = Q_3 + 1.5 \times (Q_3 - Q_1)$

(d) Find the value of h and the value of k.

(2)

An employee is selected at random.

(e) Find the probability that the distance travelled to work by this employee is an outlier.

(3)

uestion 7 continued		
		(Total 12 marks)
	TOTAL FOR PA	APER: 75 MARKS

8.	The weight, <i>X</i> grams, of soup put in a tin by machine <i>A</i> is normally distributed with a mean of 160 g and a standard deviation of 5 g. A tin is selected at random.
	(a) Find the probability that this tin contains more than 168 g. (3)
	The weight stated on the tin is w grams.
	(b) Find w such that $P(X < w) = 0.01$ (3)
	The weight, Y grams, of soup put into a carton by machine B is normally distributed with mean μ grams and standard deviation σ grams.
	(c) Given that $P(Y < 160) = 0.99$ and $P(Y > 152) = 0.90$ find the value of μ and the value
	of σ .

END	TOTAL FOR PAPER: 75 MARKS	
	(Total 12 marks)	
		Q8

Leave	
hlank	

4.	Past records show that the times, in seconds, taken to run 100 m by children at a school can be modelled by a normal distribution with a mean of 16.12 and a standard deviation of 1.60
	A child from the school is selected at random.
	(a) Find the probability that this child runs 100 m in less than 15 s. (3)
	On sports day the school awards certificates to the fastest 30% of the children in the 100 m race.
	(b) Estimate, to 2 decimal places, the slowest time taken to run 100 m for which a child will be awarded a certificate.
	(4)

7.	A manufacturer fills jars with coffee. The weight of coffee, W grams, in a jar camodelled by a normal distribution with mean 232 grams and standard deviation 5 gr	
	(a) Find $P(W < 224)$.	(3)
	(b) Find the value of w such that $P(232 < W < w) = 0.20$	(4)
	Two jars of coffee are selected at random.	
	(c) Find the probability that only one of the jars contains between 232 grams and w g of coffee.	rams
		(3)

(Total 10 marks)

L	eave
hl	ank

6.	The heights of an adult female population are normally distributed with mean 162 cm and standard deviation 7.5 cm.
	(a) Find the probability that a randomly chosen adult female is taller than 150 cm. (3)
	Sarah is a young girl. She visits her doctor and is told that she is at the 60th percentile for height.
	(b) Assuming that Sarah remains at the 60th percentile, estimate her height as an adult. (3)
	The heights of an adult male population are normally distributed with standard deviation 9.0 cm.
	Given that 90% of adult males are taller than the mean height of adult females,
	(c) find the mean height of an adult male. (4)

	Leave blank
Question 6 continued	

4.	The length of time, L hours, that a phone will work before it needs charging is nor distributed with a mean of 100 hours and a standard deviation of 15 hours.	mally
	(a) Find $P(L > 127)$.	(3)
	(b) Find the value of d such that $P(L < d) = 0.10$	(3)
	Alice is about to go on a 6 hour journey. Given that it is 127 hours since Alice last charged her phone,	
	(c) find the probability that her phone will not need charging before her journ completed.	ney is
		(4)

Question 4 continued	Leave blank
	 Q4
(Total 10 mar	

Leave blank

- **4.** The time, in minutes, taken to fly from London to Malaga has a normal distribution with mean 150 minutes and standard deviation 10 minutes.
 - (a) Find the probability that the next flight from London to Malaga takes less than 145 minutes.

(3)

The time taken to fly from London to Berlin has a normal distribution with mean 100 minutes and standard deviation d minutes.

Given that 15% of the flights from London to Berlin take longer than 115 minutes,

(b) find the value of the standard deviation d.

(4)

The time, X minutes, taken to fly from London to another city has a normal distribution with mean μ minutes.

Given that $P(X < \mu - 15) = 0.35$

(c) find $P(X > \mu + 15 \mid X > \mu - 15)$.

(3)

	Leave blank
Question 4 continued	

6.	The weight, in grams, of beans in a tin is normally distributed with mean μ and standard deviation 7.8	rd
	Given that 10% of tins contain less than 200 g, find	
	(a) the value of μ	(3)
	(b) the percentage of tins that contain more than 225 g of beans.	(3)
	The machine settings are adjusted so that the weight, in grams, of beans in a tin is normal distributed with mean 205 and standard deviation σ .	lly
	(c) Given that 98% of tins contain between 200 g and 210 g find the value of σ .	(4)
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_

Question 6 continued		blank
		Q6
	(Total 10 marks)	
	TOTAL FOR PAPER: 75 MARKS	
END	ZOZIMI OK IIII MIKO IO MILIMINO	

Statistics S1

Probability

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cap B) = P(A) P(B \mid A)$$

$$P(A \mid B) = \frac{P(B \mid A) P(A)}{P(B \mid A) P(A) + P(B \mid A') P(A')}$$

Discrete distributions

For a discrete random variable *X* taking values x_i with probabilities $P(X = x_i)$

Expectation (mean): $E(X) = \mu = \sum x_i P(X = x_i)$

Variance: $Var(X) = \sigma^2 = \sum (x_i - \mu)^2 P(X = x_i) = \sum x_i^2 P(X = x_i) - \mu^2$

For a function g(X): $E(g(X)) = \Sigma g(x_i) P(X = x_i)$

Continuous distributions

Standard continuous distribution:

Distribution of <i>X</i>	P.D.F.	Mean	Variance	
Normal $N(\mu, \sigma^2)$	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$	μ	$\sigma^{^2}$	

Correlation and regression

For a set of *n* pairs of values (x_i, y_i)

$$S_{xx} = \Sigma (x_i - \overline{x})^2 = \Sigma x_i^2 - \frac{(\Sigma x_i)^2}{n}$$

$$S_{yy} = \Sigma (y_i - \overline{y})^2 = \Sigma y_i^2 - \frac{(\Sigma y_i)^2}{n}$$

$$S_{xy} = \Sigma (x_i - \overline{x})(y_i - \overline{y}) = \Sigma x_i y_i - \frac{(\Sigma x_i)(\Sigma y_i)}{n}$$

The product moment correlation coefficient is

$$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} = \frac{\Sigma(x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\{\Sigma(x_i - \bar{x})^2\}\{\Sigma(y_i - \bar{y})^2\}}} = \frac{\Sigma x_i y_i - \frac{(\Sigma x_i)(\Sigma y_i)}{n}}{\sqrt{\left(\Sigma x_i^2 - \frac{(\Sigma x_i)^2}{n}\right)\left(\Sigma y_i^2 - \frac{(\Sigma y_i)^2}{n}\right)}}$$

The regression coefficient of y on x is $b = \frac{S_{xy}}{S_{xx}} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}$

Least squares regression line of y on x is y = a + bx where $a = \overline{y} - b\overline{x}$

THE NORMAL DISTRIBUTION FUNCTION

The function tabulated below is $\Phi(z)$, defined as $\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-\frac{1}{2}t^2} dt$.

z	$\Phi(z)$	z.	$\Phi(z)$	z	$\Phi(z)$	z	$\Phi(z)$	z	$\Phi(z)$
0.00	0.5000	0.50	0.6915	1.00	0.8413	1.50	0.9332	2.00	0.9772
0.01	0.5040	0.51	0.6950	1.01	0.8438	1.51	0.9345	2.02	0.9783
0.02	0.5080	0.52	0.6985	1.02	0.8461	1.52	0.9357	2.04	0.9793
0.03	0.5120	0.53	0.7019	1.03	0.8485	1.53	0.9370	2.06	0.9803
0.04	0.5160	0.54	0.7054	1.04	0.8508	1.54	0.9382	2.08	0.9812
0.05	0.5199	0.55	0.7088	1.05	0.8531	1.55	0.9394	2.10	0.9821
0.06	0.5239	0.56	0.7123	1.06	0.8554	1.56	0.9406	2.12	0.9830
0.07	0.5279	0.57	0.7157	1.07	0.8577	1.57	0.9418	2.14	0.9838
0.08	0.5319	0.58	0.7190	1.08	0.8599	1.58	0.9429	2.16	0.9846
0.09	0.5359	0.59	0.7224	1.09	0.8621	1.59	0.9441	2.18	0.9854
0.10	0.5398	0.60	0.7257	1.10	0.8643	1.60	0.9452	2.20	0.9861
0.11	0.5438	0.61	0.7291	1.11	0.8665	1.61	0.9463	2.22	0.9868
0.12	0.5478	0.62	0.7324	1.12	0.8686	1.62	0.9474	2.24	0.9875
0.13	0.5517	0.63	0.7357	1.13	0.8708	1.63	0.9484	2.26	0.9881
0.14	0.5557	0.64	0.7389	1.14	0.8729	1.64	0.9495	2.28	0.9887
0.15	0.5596	0.65	0.7422	1.15	0.8749	1.65	0.9505	2.30	0.9893
0.16	0.5636	0.66	0.7454	1.16	0.8770	1.66	0.9515	2.32	0.9898
0.17	0.5675	0.67	0.7486	1.17	0.8790	1.67	0.9525	2.34	0.9904
0.18	0.5714	0.68	0.7517	1.18	0.8810	1.68	0.9535	2.36	0.9909
0.19	0.5753	0.69	0.7549	1.19	0.8830	1.69	0.9545	2.38	0.9913
0.20	0.5793	0.70	0.7580	1.20	0.8849	1.70	0.9554	2.40	0.9918
0.21	0.5832	0.71	0.7611	1.21	0.8869	1.71	0.9564	2.42	0.9922
0.22	0.5871	0.72	0.7642	1.22	0.8888	1.72	0.9573	2.44	0.9927
0.23	0.5910	0.73	0.7673	1.23	0.8907	1.73	0.9582	2.46	0.9931
0.24	0.5948	0.74	0.7704	1.24	0.8925	1.74	0.9591	2.48	0.9934
0.25	0.5987	0.75	0.7734	1.25	0.8944	1.75	0.9599	2.50	0.9938
0.26	0.6026	0.76	0.7764	1.26	0.8962	1.76	0.9608	2.55	0.9946
0.27	0.6064	0.77	0.7794	1.27	0.8980	1.77	0.9616	2.60	0.9953
0.28	0.6103	0.78	0.7823	1.28	0.8997	1.78	0.9625	2.65	0.9960
0.29	0.6141	0.79	0.7852	1.29	0.9015	1.79	0.9633	2.70	0.9965
0.30	0.6179	0.80	0.7881	1.30	0.9032	1.80	0.9641	2.75	0.9970
0.31	0.6217	0.81	0.7910	1.31	0.9049	1.81	0.9649	2.80	0.9974
0.32	0.6255	0.82	0.7939	1.32	0.9066	1.82	0.9656	2.85	0.9978
0.33	0.6293	0.83 0.84	0.7967	1.33	0.9082	1.83	0.9664	2.90	0.9981
0.34 0.35	0.6331 0.6368	0.84	0.7995 0.8023	1.34 1.35	0.9099 0.9115	1.84 1.85	0.9671 0.9678	2.95 3.00	0.9984 0.9987
0.36	0.6406	0.86	0.8051	1.36	0.9131 0.9147	1.86	0.9686	3.05	0.9989 0.9990
0.37 0.38	0.6443 0.6480	0.87 0.88	0.8078 0.8106	1.37 1.38	0.9147	1.87 1.88	0.9693 0.9699	3.10 3.15	0.9990
0.38	0.6480	0.88	0.8106	1.38	0.9162	1.88	0.9699	3.13	0.9992
0.39	0.6554	0.89	0.8159	1.39	0.9177	1.89	0.9700	3.25	0.9993
0.40	0.6591	0.91	0.8135	1.40	0.9192	1.91	0.9719	3.30	0.9995
0.41	0.6591	0.91	0.8186	1.41	0.9207	1.91	0.9719	3.35	0.9995
0.42	0.6664	0.92	0.8212	1.42	0.9222	1.92	0.9720	3.33	0.9990
0.43	0.6700	0.94	0.8264	1.44	0.9251	1.94	0.9738	3.50	0.9998
0.45	0.6736	0.95	0.8289	1.45	0.9265	1.95	0.9744	3.60	0.9998
0.46	0.6772	0.96	0.8315	1.46	0.9279	1.96	0.9750	3.70	0.9999
0.47	0.6808	0.97	0.8340	1.47	0.9292	1.97	0.9756	3.80	0.9999
0.48	0.6844	0.98	0.8365	1.48	0.9306	1.98	0.9761	3.90	1.0000
0.49	0.6879	0.99	0.8389	1.49	0.9319	1.99	0.9767	4.00	1.0000
0.50	0.6915	1.00	0.8413	1.50	0.9332	2.00	0.9772		

PERCENTAGE POINTS OF THE NORMAL DISTRIBUTION

The values z in the table are those which a random variable $Z \sim N(0, 1)$ exceeds with probability p; that is, $P(Z > z) = 1 - \Phi(z) = p$.

р	Z	р	z
0.5000	0.0000	0.0500	1.6449
0.4000	0.2533	0.0250	1.9600
0.3000	0.5244	0.0100	2.3263
0.2000	0.8416	0.0050	2.5758
0.1500	1.0364	0.0010	3.0902
0.1000	1.2816	0.0005	3.2905